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Branched Polymers on the Two-Dimensional Square
Lattice with Attractive Surfaces
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Using the renormalization group approach, an analysis is given of the
asymptotic properties of branched polymers situated on the two-dimensional
square lattice with attractive impenetrable surfaces. We modeled branched
polymers as site lattice animals with loops and site lattice animals without loops
on the simple square lattice. We found the gyration radius critical exponent
v=0.651140.0003 and v =0.6513 + 0.0003 for branched polymers with and with-
out loops, respectively. Our results for the crossover exponent ¢ =0.502 +0.003
for branched polymers with loops and ¢ =0.503 4+ 0.003 for branched polymers
without loops satisfy the recent hyperuniversality conjecture ¢ = 1. In addition,
we have studied partially directed site lattice animals.
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1. INTRODUCTION

Polymer adsorption on a substrate is of experimental and theoretical interest
so the statistical mechanics of surface critical phenomena in polymer physics
has been the subject of intensive research activity for a long time. The case
of randomly branched polymers can be of interest for the understanding of
surface properties of some interesting physical systems (sol-gel transition
near a wall, for example). Although the renormalization group methods have
had widespread use in studying critical properties of lattice animals,"* to
our knowledge it has never before been used for studying adsorption
phenomena of branched polymers on square lattice. Of course, the renor-
malization group method can be applied only approximately, but it gave
very good result for critical exponent of gyration radius for the site lattice
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animals® by extrapolation in the asymptotic scaling limit when the number
of sites in an animal tends to infinity. Therefore, it is interesting to see
results which this method gives in the case of branched polymers situated
on square lattice with adsorbed walls.

Recently, surface critical behavior of several models of branched
polymers has been analyzed. In particular, there is an exact value of the
crossover exponent (¢ =1/2) for the adsorption problem.>® It has been
argued, moreover, that this value should be hyperuniversal, i.e., indepen-
dent of the dimension of embedding space. This is in good agreement with
transfer-matrix” and series expansion® results in d=2, but it does not
agree well with Monte-Carlo simulations® in d = 3.

The paper is organized as follows. In Section 2 we have presented our
model of branched polymers on the simple square lattice and corresponding
renormalization group method. In Section 3, we have determined the critical
exponents and extrapolate data to the case of large systems. Some final
remarks and an overall discussion is given in Section 4.

2. MODEL AND METHOD

We have modeled branched polymers as site lattice animals with
loops, without loops and partially directed ones (see Fig. 1) situated on the
simple square lattice with adsorbed surfaces. In the lattice animal problem
we are interested in the statistics of all distinct clusters starting at the origin
of an infinite lattice and we rescale a cell if it contains a single cluster
originating at a fixed origin on the cell.¥ But, in order to study branched
polymers with attractive surfaces we have investigated branched polymers
situated on a finite lattice of b x b sites with all four attractive walls, and
then we have extrapolated results to the case of an infinite system.

The surface generating function of this model can be written in the
form

2(x,z) =), (M, K) xMz* (1)

Here, interaction with surfaces is modeled by assigning a coupling z for
every monomer lying on any wall, which may be considered as a short-
range force between monomers and the wall while the others have the
normal bulk monomer fugacity x; w(M, K) denotes the number of all
different connected clusters where each cluster starts from a fixed origin
(which we have chosen to be the lower left-hand corner, as shown in Fig. 1),
and extends to the opposite wall having M monomers into the bulk and K
monomers lying on the walls.
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Fig. 1. Examples of the polymer configurations modelled as: (a) site lattice animals, (b) site
lattice animals without loops and (c) partially directed site lattice animals without loops (only
+ X and 4 Y steps are allowed) on the square lattice of length b= 6. Each occupied site has
a fugacity z if it is situated on any wall of the lattice (black square) and the normal bulk-
fugacity x otherwise (black circle). For the present examples this leads to the renormalization

equations: (a) z' = x5z, x'=x%, (b) 2/ =x"z% ¥ =x? and (¢) 2/ =x'"z!% x' =x%.
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In the similar way the bulk generating function has the form
F(x)=) o(N)x" (2)

where N is the total number of monomers in one connected cluster defined
as above.

The renormalization group recursion relation is defined by requiring
that the generating function is invariant on the original and rescaled levels.
We now have two recursion relations

X' =E%x) (3)
2= E%(x, z) (4)

where the renormalized fugacities x’ and z’' are the generating functions of
a single site on the rescaled lattice. These equations have three relevant
fixed points, one of which is the non trivial fixed point

('xc’Zc):(XOJ-xO) (5)

that describes an adsorption transition (parameters x, are given in the
Table 1).

Linearising the transformation around the non trivial fixed point we
have found two eigenvalues, 4, and A, greater than 1, corresponding to the
bulk relation (3) and to the surface one (4) respectively. These two eigen-
values give the gyration-radius critical exponent:%19 y as

v=Inb/In 1, (6)
and the crossover exponent ¢ as

d=Ina,/In’, (7)

3. RESULTS

The results for x,, v and ¢ of these transformations are given in
Table 1 for branched polymers on the square lattice. They are calculated
for the lattice lengths up to b =38 for site lattice animals with and without
loops and up to b=9 for partially directed site lattice animals without
loops.

In order to check the method, first we calculate the critical exponent v,
characterizing the asymptotic behavior of the gyration-radius, by fitting the
data of Table1 using the well known method* ') from previous RG
studies. We find v~'=1.5359 +0.00074 and v—!=1.535.34+0.00074, ie.,
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v=0.6511+0.00034 and v=0.6513+0.00034 for branched polymers
modeled as site lattice animals with loops and site lattice animals without
loops on the simple square lattice. We can see that these two models,
within error bars, give the consilient value for the critical exponent v, so
these results prove that the hypothesis‘®!? that branched polymers with
and without loops, in a good solvent, belong to the same universality class
is valid for the case of branched polymers modeled as a site lattice animals.
The results we have got for critical exponent v are in good agreement with
these already found for site lattice animals.®* ' ' Tt is easy to see from the
Table 1 that the partially directed polymers without loops do not belong to
the same universality class as the above two models. The same is true for
the partially directed polymers with loops. We can conclude that partially
directed site lattice animals is a too simplified model and it can not be used
for studying branched polymers in a good solvent. However, this model
gives the similar behavior for the surface crossover exponent (see Table 1)
which is in favor of the hypothesis of universality.

Our analyses show that in order to find the crossover exponent ¢ for the
infinite system it is convenient to introduce a new variable /=exp(—3b).
The data for the crossover exponent ¢ of Table 1, for not too small b, can
be fitted well as a function of / by the second degree polynomial function

$(b)=¢ +cil+c,l? (8)

see Fig. 2. Fitting the data of Table 1 to (8), where we have omitted the
first two points in order to have a smaller error, we extrapolate the finite-b
results to the limit b —» co. We have found ¢ =0.502 4+ 0.003 for branched
polymers and ¢ =0.503+0.003 for branched polymers without loops
modeled as a site lattice animals. For both models the crossover exponent
¢ is consistent with the hyperuniversality conjecture ¢ = 3.6

4. CONCLUSION

We have studied branched polymers modeled as site lattice animals
situated on the square lattice with adsorbed surfaces using a renormaliza-
tion group approach. The three cases studied are: (a) randomly branched
polymers without loops (tree-like branched polymers) where two elements
belonging to it are connected through one and only one path in the animal,
(b) randomly branched polymers with loops in which branch endpoints are
allowed to be connected to other elements of the polymer, thereby forming
loops and (c) partially directed randomly branched polymers without loops
where every polymer configuration is represented by one connected cluster
starting from the lower left hand corner that may grow only in the positive
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Fig. 2. Dependence of ¢ against /=exp(—32b) from Table 1. The curves through the points
are the best fit to our two sets of data; (1) for branched polymers with loops and (2) for
branched polymers without loops.

X direction while walks in the Y direction are without limitation. But we
have found that the third model is too simplified to be used for studying
branched polymers.

We have found the gyration radius critical exponent for the branched
polymers with loops v=10.65114+0.0003 and for the branched polymers
without loops v=0.6513 4+ 0.0003 which is in good agreement with results
already found for site animals'*'*'¥ and supports the hypothesis that
branched polymers with and without loops, in a good solvent, belong to
the same universality class.* 1%

The crossover exponent ¢ has the value ¢ =0.502 4+ 0.003 for branched
polymers with loops and ¢ =0.503 + 0.003 for branched polymers without
loops. This is consistent with the exact value of the crossover exponent*:®
(¢ =1/2) for the adsorption problem and agrees well with transfer-matrix”’
and series expansion.®
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